Sum-free Sets in Abelian Groups

نویسندگان

  • BEN GREEN
  • IMRE Z. RUZSA
چکیده

Let A be a subset of an abelian group G with |G| = n. We say that A is sum-free if there do not exist x, y, z ∈ A with x+ y = z. We determine, for any G, the maximal density μ(G) of a sum-free subset of G. This was previously known only for certain G. We prove that the number of sum-free subsets of G is 2, which is tight up to the o-term. For certain groups, those with a small prime factor of the form 3k + 2, we are able to give an asymptotic formula for the number of sum-free subsets of G. This extends a result of Lev, Luczak and Schoen who found such a formula in the case n even.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Sum-free Sets in Abelian Groups

In this paper we study sum-free sets of order m in finite Abelian groups. We prove a general theorem about independent sets in 3-uniform hypergraphs, which allows us to deduce structural results in the sparse setting from stability results in the dense setting. As a consequence, we determine the typical structure and asymptotic number of sum-free sets of order m in Abelian groups G whose order ...

متن کامل

Random Sum-free Subsets of Abelian Groups

We characterize the structure of maximum-size sum-free subsets of a random subset of an Abelian group G. In particular, we determine the threshold above which, with high probability as |G| → ∞, each such subset is contained in some maximum-size sum-free subset of G, whenever q divides |G| for some (fixed) prime q with q ≡ 2 (mod 3). Moreover, in the special case G = Z2n, we determine the sharp ...

متن کامل

1 7 Fe b 20 05 Sum - free sets in abelian groups

Let A be a subset of a finite abelian group G. We say that A is sum-free if there is no solution of the equation x + y = z, with x, y, z belonging to the set A. In this paper we shall characterise the largest possible sum-free subsets of G in case the order of G is only divisible by primes which are congruent to 1 modulo 3.

متن کامل

2 00 5 Large sum - free sets in abelian groups

Let A be a subset of a finite abelian group G. We say that A is sum-free if the equation x + y = z, has no solution (x, y, z) with x, y, z belonging to the set A. In this paper we shall characterise the largest possible sum-free subsets of G in case the order of G is only divisible by primes which are congruent to 1 modulo 3.

متن کامل

A Szemerédi-type regularity lemma in abelian groups

Szemerédi’s regularity lemma is an important tool in graph theory which has applications throughout combinatorics. In this paper we prove an analogue of Szemerédi’s regularity lemma in the context of abelian groups and use it to derive some results in additive number theory. The simplest is a structure theorm for sets which are almost sum-free. If A ⊆ {1, . . . , N} has δN2 triples (a1, a2, a3)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004